
PHYS 705: Classical Mechanics
Constraints and 
Generalized Coordinates
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Constraints
Problem Statement:

In principle, one can solve for ri(t) (trajectory) for the ith particle by 
specifying all the external and internal forces acting on it . 

( )e
ji i i i

j

m F F r

In solving mechanical problems, we start with the 2nd law 

However, if constraints are present, these external forces in 
general are NOT known.

Therefore, we need to understand the various constraints and 
know how to handle them.

(*)
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Holonomic Constraints
Holonomic constraints can be expressed as a function in terms of the 
coordinates and time,

e.g. (a rigid body) 

 1 2, , ; 0f t r r 

non-holonomic examples:

More quantifiers: 

 2 2 0i j ijc  r r

-Gas in a container
-Object rolling on a rough surface without 
slipping… more later 

- Rheonomous: depend on time explicitly 
- Scleronomous: not explicitly depend on time

e.g. a bead constraints to move on a fixed vs. a moving wire
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1. Through                                     , the individual coordinates ri are 
no longer independent

 eqs of motion (*) for individual particles are now coupled
(not independent)

2. Forces of constraints are not known a priori and must be solved 
as additional unknowns

Constraints and Generalized Coordinates
Difficulties involving constraints:

 1 2, , ; 0f t r r 

With holonomic constraints:

Prob #2 can be treated with: D’Alembert’s Principle & Lagrange’s Equations  
(with Lagrange multipliers)

Prob #1 can be handled by introducing a set of “proper” (independent)
Generalized Coordinates
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• Without constraints, a system of N particles has 3N dof

• With K constraint equations, the # dof reduces to 3N-K

Generalized Coordinates
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


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
are related by 

a point transformation

 1 3and ,i N Kq q r 

• With holonomic constraints, one can introduce (3N-K) independent

(proper) generalized coordinates such that:

• The goal is to describe the time evolution of the system in the set of 

(3N-K) independent (proper) generalized coordinates.



Generalized Coordinates

 Generalized coordinates can be anything: angles, energy units, momentum 
units, or even amplitudes in the Fourier expansion of ri

 Each      is just a number, a scalar 

But, they must completely specify the state of a given system

The choice of a particular set of generalized coordinates is not unique.

No specific rule in finding the most “suitable”  (resulting in simplest EOM)
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Generalized Coordinates

 1 2, 

 
    

1
1 1 1

1
2 2 1 2 1

tan

tan

x y

x x y y











  

Example:

x

y

l

l

O

(x1, y1)

(x2, y2)

1

2

 irIn Cartesian coord :

 1 1 2 2, , ,x y x y

2 constraints: 
   

2 2 2
1 1

2 2 2
2 1 2 1

0

0

x y l

x x y y l

   


    

 jqOne choice of generalized coords is:

we have 4 dof

2  indep dof

And, they are linked to the Cart. coord through:

(Double Plane Pendulum)

(constraints are implicitly 

encoded in the Pt Trans)
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Non-Holonomic Constraints
- can’t use constraint equations to eliminate dependent coordinates

- in general, solution is problem specific.

O

Example in book: Vertical Disk rolling without slipping on a horizontal plane

x

y

v



z

f Described by 4 coordinates:

(x, y) of the contact point

 : orientation of disk-

angle of disk axis with x-axis

f : angle of rotation of the disk

a
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Non-Holonomic Constraints  (rolling disk exp)

sin

cos

x v

y v





   




Now, consider the constraints:

No-slip condition1.   :

s a v af f   

x

y

v


v sin

-v cos

top view



2. Disk rolling vertically

disk axis v see  graph
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Non-Holonomic Constraints  (rolling disk exp)

The point is that we can’t write this in Holonomic form: 

Putting them together, gives the following differential equations of constraint,

sin sin
sin 0

cos 0
cos cos

dx d
a a

dx a ddt dt or
dy d dy a d

a a
dt dt

ff    f
f  ff  

            






 , , 0f x yf   with f being a function!

Physical intuition  Roll the disk in a circle with radius R.

Upon completion of the circle, x, y and  will have returned to their original 

values   but, f will depend on R (can’t be specified by                 )

(hw)
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How to deal with Constraints?
Principle of Virtual Work

Consider the simplest situation, a system in equilibrium first,

- The net force on each particle vanishes:  0i F (note: i labels the particles)

Consider an arbitrary “virtual” infinitesimal change in the coordinates,  

- Virtual means that it is done with no change in time during which 
forces and constraints do not change. 

- These virtual displacements are done consistent with the constraints 
(we will be more specific later).

ir

Since the net force on each particle, Fi is 

zero (equilibrium), obviously we have:

0i i
i

 F r

(virtual work)
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Principle of Virtual Work

Separating the forces into applied         and constraint forces      ,

( )a
i i i F F f

Then, we have
( ) 0a
i i i i

i i

     F r f r

( )a
iF if
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Now, what do we mean by the virtual displacements        being done 

consistent with the constraint?

ir



Principle of Virtual Work

For virtual displacements to be consistent with the constraints means that 

 the virtual work done by the constraint forces along the virtual displacement 
must be zero. 

Geometric view

ir
if

N particles with K constraints, motion is restricted 
on a (3N-K)-D surface and the constraint forces fi

must be     to that surface.
  or  0i i i i   f r f r
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For          to be consistent with constraints means that the net virtual work 

from the forces of constraints is zero !

0i i
i

  f r

ir

>> More on this later for



Principle of Virtual Work

With the virtual displacements satisfying the constraints leaves us with the 

statement,

This is called the Principle of Virtual Work. 

( ) 0a
i i

i

 F r
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( ) 0a
i i i i

i i

     F r f r

Back to our original equation for a constrained system in equilibrium,

 The virtual work of the applied forces must also vanish!

0



Principle of Virtual Work

Note: Since the coordinates (and the virtual variations) are not necessarily 

independent.  They are linked through the constraint equations.  The 

Principle of Virtual Work does not imply, 

( ) 0a
i i

i

 F r

( ) 0 for all  independently.a
i iF

The trick is now to change variables to a set of proper (independent)

generalized coordinates.  Then, we can rewrite the equation as,

 ? 0jj
j

q 
With qj being independent, we can then claim: for all j.  As we will 

see,  this will give us expressions which will lead to the solution of the problem.

 ? 0
j


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D’Alembert’s Principle

Now, we consider the more general case when the system is not necessary in 

equilibrium so that the net force on the particles is NOT zero. We  

continue to assume the constraints forces to be unknown a priori…

This is the basis for the D’Alembert’s Principle AND by additionally 

choosing a set of proper generalized coordinates, the problem can 

be solved and it will result in the Euler-Lagrange’s Equations.

Similar to our discussion on the Principle of Virtual Work, we would like to 

reformulate the mechanical problem to include the constraint forces such 

that they “disappear”  you solve the “new” problem using only the 

(given) applied forces.
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D’Alembert’s Principle

In deriving the Principle of Virtual Work, the system was in equilibrium.

In extending it to include dynamics , we will begin with Newton’s 2nd law,

ir

or 0i i i i  F p F p 

  0i i i
i

   F p r
( )a

i i i F F f

for the ith particle in the system.

We again consider a virtual infinitesimal displacement         consistent with 

the given constraint.  Since we have                       for all particles, 0i i F p

 ( ) 0a
i i i i i

i i

      F p r f r

We have, 

Again, we separate out the applied and constraint forces, 

This gives, 
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D’Alembert’s Principle

Then, following a similar argument for the virtual displacement to be 

consistent with constraints, i.e, (no virtual work for fi)

 ( ) 0a
i i i

i

   F p rWe can write down, 

This is the D’Alembert’s Principle.

0i i
i

  f r

Again, since the coordinates (and the virtual variations) are not necessary

independent.  This does NOT implies,                              for the individual i. ( ) 0a
i i F p

We then need to look into changing variables to a set of independent generalized 

coordinates so that we have                                    with the  coefficients                    

in the sum independently equal to zero, i.e.,

 ? 0jj
j

q 
 ? 0

j

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Geometric View of the D’Alembert’s Principle

Consider a particle moving in 3D with one Holonomic constraint,

equation of motion:

Note:  r(t) has 3 unknown 

components + 1 constraint

( )am  r F f

x

y

z

r (t)

m

equation of constraint: ( , ) 0g t r

trajectory (red) is constraint to move in a 3-

1=2 dimensional surface (blue                 ).

Here, 

- F(a) is the known applied force

- And, we model the unknown 

constraint force by the vector f. 
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( , , )x y zr

( , ) 0g t r

( , ) 0g t r



Geometric View of the D’Alembert’s Principle

- There are three unknown components to the constraint force f.  A scalar 
constraint does not specify the vector f completely.

Observation:  For a given f, adding a component // to the surface will still 
keep the particle on the surface (satisfying g(r, t)=0) but will result with an 
additional acceleration along the surface).

- There are multiple choices for f which satisfy g(r, t)=0 BUT there is an 
additional physical restriction on f that we should consider…

x

y

z

f

x

y

z

f
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Constraint Force f needs to lay      to the constraint surface

Geometric View of the D’Alembert’s Principle

 A reasonable physical argument is to restrict the choice of f so that: 

Note that is the equation for the 
constraint surface and



x

y

z

f

( , ) 0g t r

( , ) surfaceg t  r

So, we can “parametrized”    in term of             ,

( , )g t f r where  is a parameter

( ) ( , )

( , ) 0

am g t

g t

   


 

x F r

r

 4 unknowns r and  
4 equations

This gives,
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( , ) 0g t r

( , )g trf



Geometric View of the D’Alembert’s Principle

This system is solvable but now we would like to solve the system w/o using the 
constraint explicitly …

Note that         is      to the surface of constraint and we can project the dynamical 
equation onto the tangent plane of the constraint surface at (r, t).

To do that, take                    as two basis vectors spanning the tangent plane to the 
constraint surface at (r, t).  Dotting the above Eq to                     gives two 
independent scalar equations,



( ) ( , )

( , ) 0

am g t

g t

   


 

r F r

r

 4 unknowns r and  
4 equations

g

 
 

( )

( )

( , ) 0

( , ) 0

a
a a

a
b b

m g t

m g t





     

     

r F e r e

r F e r e





 and a be e
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Geometric View of the D’Alembert’s Principle

Together with the constraint equation itself, we then have 3 eqs for the 3 
unknown components of r.

So, now, in principle, we can solve for the dynamical equation (EOM), r(t), 
without knowing the constraint forces f explicitly.

 This is the D’Alembert’s Principle (for a single particle).

 ( )
, 0

( , ) 0

a
a bm

g t

   


 

r F e

r

 3 unknowns r
3 equations

 ( )
, 0a

a bm   r F e
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Note: The virtual 
displacements consistent 
with the constraints are 
in the tangent space 
spanned by the basis 

Geometric View of the D’Alembert’s Principle

We can generalize the argument to a system of N particles with K constraints 
(Holonomic):

Geometric Interpretation: 

The K constraints restrict the system to a (3N-K)-D surface within the 3N-D 

space.  There are (3N-K) ek vectors spanning that tangent plane to the 

constraint surface so that the above expression gives (3N-K) equations that the 

problem can be solved without knowing the constraint forces explicitly.

 ( ) 0a
i i i k

i

m    r F e ir

 ke
 ( ) 0a

i i i
i

    
 
 p F r
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Then, we can claim the “coefficients”           in the sum to be independently 

equal to zero, i.e., 

D’Alembert’s Principle

 ( ) 0a
i i i

i

   F p r

To solve for  EOM using  the D’Alembert’s Principle …

We still need to look into changing variables to a set of independent generalized 

coordinates so that we have                                    

 ? 0jj
j

q 
 ?

j

 ? 0
j


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The correct “coefficients” allowing us to have                    will give us the Euler-

Lagrange equation and the EL Eq gives an explicit expression for the EOM:

D’Alembert’s Principle

 ( ) 0a
i i i

i

   F p r

To solve for  EOM using  the D’Alembert’s Principle …

We still need to look into changing variables to a set of independent generalized 

coordinates so that we have                                    

 ? 0jj
j

q 
 ? 0

j

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Side Note: Constraint and Work

Let F(a)  be a conservative force , i.e.,                                  so that ( ) ( , )a U t F r

m U g   r
Dotting      into both sides,r

21

2

d dT
m m

dt dt
    
 

r r r   U g    r r 

Consider the full-time derivative of g , we have,

 dg g dx g dy g dz g g
g

dt x dt y dt z dt t t

     
             

r
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( ) ( , )am g t  r F rRecall that we have from the EOM:



An Aside: Constraint and Work

As the particle moves, it is constraint to stay on the g=0 surface, 

So,                     and,0
d g

d t


dU U

dt

d

tdt t

T g
 




 


Similarly, considering the full-time derivate of U,
dU U

U
dt t


   


r

  g
g

t


   


r

Putting everything together,

dE U g

dt t t
 

 
 

With E=T+U,
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Um g     r rr r  



An Aside: Constraint and Work

So, either U or g explicitly depends on time, the total energy changes with time.

Since we typically do not consider time-dependent U potential functions, 

So, we can make the following assertions:

  0
g

g
t


    


r

Scleronomous (g not explicitly depends on t) Holonomic Constraints:

and constraint force won’t do work!

  0
g

g
t


    


r

Rheonomous (g explicitly depends on t) Holonomic Constraints:

and constraint force can do work! 
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dE U g

dt t t
 

 
 


